Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia

نویسندگان

  • M. G. Tosca
  • J. T. Randerson
  • C. S. Zender
  • D. L. Nelson
  • D. J. Diner
  • J. A. Logan
چکیده

[1] During the dry season, anthropogenic fires in tropical forests and peatlands of equatorial Asia produce regionally expansive smoke clouds that have important effects on atmospheric radiation and air quality. Here we estimated the height of smoke on Borneo and Sumatra and characterized its sensitivity to El Niño and regional drought. We used Multiangle Imaging Spectroradiometer (MISR) satellite data and the MISR Interactive Explorer (MINX) software to estimate the heights of 317 smoke plumes on Borneo and 139 plumes on Sumatra during 2001–2009. In addition, we estimated the altitudes of larger smoke regions (smoke clouds) over Borneo using data from MISR and Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) products. Most smoke plumes on Borneo (83%) were observed during El Niño years. Annually averaged plume heights on Borneo were significantly higher during El Niño events. Mean MISR‐derived plume heights were 709 ± 14 m on Borneo and 749 ± 24 m on Sumatra during 2001–2009, with 96% of all plumes confined to within 500 m of the atmospheric boundary layer. Smoke clouds on Borneo were observed at altitudes between 1000 and 2000 m as measured by both MISR and CALIPSO. The difference in height between individual plumes and longer‐lived regional smoke clouds may be related to deeper planetary boundary layers and higher‐intensity fires later in the afternoon or other atmospheric mixing processes that occur on synoptic time scales. Our measurements and analyses suggested that direct injection of smoke into the free troposphere within fire plumes was not an important mechanism for vertical mixing of aerosols in equatorial Asia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Release and dispersion of vegetation and peat fire emissions

Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases and particles into the atmo...

متن کامل

Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14–32 c...

متن کامل

Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire events. It is expected that the 2015–2016 Indonesia...

متن کامل

Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wide...

متن کامل

A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements

Satellites provide unique perspectives on aerosol global and regional spatial and temporal distributions, and offer compelling evidence that visibility and air quality are affected by particulate matter transported over long distances. The heights at which emissions are injected into the atmosphere are major factors governing downwind dispersal. In order to better understand the environmental f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011